A Non-confounded Spatio–Temporal Count Model for Analysis of Wet-Day Frequency Data
کد مقاله : 1034-SPATIAL (R1)
نویسندگان
مهسا نادی فر1، حسین باغیشنی *2
1Department of Statistics | University of Pretoria
2دانشگاه صنعتی شاهرود
چکیده مقاله
‎We present a non-confounded spatio–temporal count regression based on a Gamma–Count (GC) model for spatially distributed counts with dispersion‎, ‎latent dependence‎, ‎and spatial confounding‎. ‎Within a structured additive regression‎, ‎we combine thin‐plate splines‎, ‎a Matérn SPDE field with an AR(1) time effect‎, ‎and optional nonlinear effects. Inference is conducted within a Bayesian framework using the integrated nested Laplace approximation (INLA) method. ‎The proposed model, applied to the monthly wet-day frequency at 94 Quebec stations from January to March 2025 with unequal exposure, outperforms the relevant Poisson and negative binomial baselines, ‎showing a strong positive effect of total precipitation and negligible temperature effects after deconfounding‎. ‎Posteriors indicate under‐dispersion‎, ‎long spatial range‎, ‎high temporal persistence‎, ‎and calibrated latent‐field maps‎. ‎The framework advances Bayesian analysis of environmental counts by jointly addressing dispersion‎, ‎dependence‎, ‎and confounding‎, ‎and offers a practical template for hydrologic and climate applications‎.
کلیدواژه ها
Gamma-count ‎model‎, ‎Spatial+‎, Confounding‎, Spatio-temporal data‎, Precipitation‎, ‎SDG‎.
وضعیت: پذیرفته شده برای ارائه شفاهی